Acropora hyacinthus

Wenn Korallen anders sind, als wir dachten: Forscher entdecken verborgene Arten

Traditionelle Korallentaxonomie, die auf Skelettmorphologie basiert, widerspiegelt die tatsächliche Artenvielfalt und systematischen Beziehungen innerhalb des Acropora hyacinthus-Komplexes nicht korrekt. Durch die Kombination von molekularer Genomik mit morphologischen Vergleichen wurde die Taxonomie dieses Korallengruppenkreises überarbeitet.

Unaufgeklärte Abstammungslinien tischförmiger Acropora aus der vorliegenden Studie. (a, b) Acropora cf. tanegashimensis, 54-5935, Ryukyu-Inseln, Japan. (c, d) Acropora sp. VI-HB, 22Pse25, Orpheus Island, Great Barrier Reef, Australien. (e, f) Acropora sp. VI-4, 29-4585, Aceh, Indonesien. (g, h) Acropora sp. VI-3, 29-8193, Aceh, Indonesien. (i, j) Acropora sp. VI-1, 79-0666, Solitary Islands, New South Wales, Australien. (k, l) Acropora sp. VI-2, GBR134, Myrmidon Reef, Great Barrier Reef, Australien.

Die Forschenden nutzten:

  • Proben aus 22 Regionen des Indo-Pazifiks,
  • phylogenomische Analysen mittels gezielter Erfassung ultrakonservierter Elemente (UCEs) und Exons,
  • morphologische Vergleiche mit Typmaterial,
  • genetische Artenabgrenzungsverfahren (SNP-Analysen).
    Daraus wurden primäre Arthosehypothesen (PSHs) gebildet und geprüft.

Ergebnisse:
▪ Die integrierte Analyse identifizierte 16 genetisch klar abgegrenzte Linien, die als eigene Arten angesehen werden können.
▪ Neun zuvor synonymisierte Arten wurden wieder als gültige Arten anerkannt (z. B. A. turbinata, A. surculosa, A. conferta).
▪ Fünf neue Arten wurden beschrieben:

  • A. harriottae sp. nov. (südöstliches Australien),
  • A. tersa sp. nov. (östliches Australien & westlicher Pazifik),
  • A. nyinggulu sp. nov. (östlicher Indischer Ozean & südliches Japan),
  • A. uogi sp. nov. (westlicher Pazifik),
  • A. kalindae sp. nov. (nordöstliches Australien).

Schlussfolgerungen / Bedeutung:

  • Die tatsächliche Artenvielfalt im A. hyacinthus-Komplex ist deutlich höher als bisher angenommen.
  • Viele Arten haben engere geografische Verbreitungen, was für Artenschutz und Management von Korallenriffen wichtig ist, da kleinräumig endemische Arten (z. B. A. harriottae) ein erhöhtes Aussterberisiko haben können.
  • Die Studie zeigt die Bedeutung integrativer Taxonomie (Genomik + Morphologie) zur Aufklärung von Artenvielfalt, besonders bei Gruppen, die genetisch divers, aber morphologisch ähnlich sind.

Mehr Informationen: Rassmussen SHCowman PFBaird AHCrosbie AJQuattrini AMBonito VSinniger FHarii SCabaitan PCFadli NTan CHung JYRongo THuang DHalafihi TBridge TCL. (2025) The tables have turned: taxonomy, systematics and biogeography of the Acropora hyacinthus (Scleractinia: Acroporidae) complex. Invertebrate Systematics 39, IS24049. https://doi.org/10.1071/IS24049

 

Gobiodon‑Arten im Überblick: Was Meerwasseraquarianer wissen sollten

Korallengrundeln richtig bestimmen: Der neue Gobiodon‑Guide

Der Artikel bietet eine umfassend aktualisierte Übersicht über die Korallengrundeln der Gattung Gobiodon, die als obligate Korallenbewohner eine wichtige Rolle im Ökosystem tropischer Riffe spielen. Trotz ihrer ökologischen Bedeutung werden sie in vielen Biodiversitätsstudien übersehen, vor allem wegen der schwierigen Artbestimmung.

Die Autoren stellen:

  • Diagnostische Merkmale der meisten Indo‑Pazifik‑Arten vor, insbesondere Körperfärbung und Farbmarkierungen, die für die Identifikation entscheidend sind.
  • Lebendfarb-Beschreibungen, bekannte Wirtskorallen, Habitate und geografische Verbreitungen für 26 der 31 beschriebenen Arten bereit.
  • Eine Zusammenführung neuer Erkenntnisse zu Sozialverhalten, Genetik und Artbeziehungen innerhalb der Gattung.
  • Praktische Feldhilfen wie einen Bestimmungsschlüssel, eine Vorkommenskarte und eine Farbtafel aller behandelten Arten.

Die Gattung Gobiodon lebt vor allem in Korallen der Gattungen Acropora, Stylophora, Hydnophora und Echinopora und zeigt ausgeprägtes kryptisches Verhalten. Der Artikel schließt damit eine wichtige Lücke in der Feldidentifikation und Biodiversitätsforschung.

Mehr Informationen: Hildebrandt, C.A., Froehlich, C.Y.M., Klanten, O.S. & Wong, M.Y.L. (2025) Goby spotting: An updated guide to coral gobies (Genus: Gobiodon) in the Indo-Pacific Region. Zootaxa, 5723 (2), 151–188. https://doi.org/10.11646/zootaxa.5723.2.1

 

Wildfänge für USA

Vornehmlich Wildfänge für die USA

Eine Studie in den USA untersucht die ökologischen Risiken des US-amerikanischen Onlinehandels mit Meerwasserfischen. Die Studie zeigt, dass etwa 90 % der angebotenen Arten direkt aus Wildfängen stammen, während nur ein sehr kleiner Anteil aus Aquakultur stammt. Von den 734 untersuchten Fischarten in vier großen Online-Shops waren 655 ausschließlich Wildfänge und nur 21 Arten stammten vollständig aus Zuchtbeständen. Besonders besorgniserregend ist, dass viele dieser Arten auf der Roten Liste gefährdeter Arten der IUCN stehen oder bereits rückläufige Populationen zeigen.

Zwar sind Nachzuchtfische im Durchschnitt rund 28 % günstiger als Wildfänge, dennoch dominiert der Markt weiterhin stark den Fang aus natürlichen Riffen. Diese Praxis belastet empfindliche Ökosysteme erheblich, da durch den Fang der Fische ganze Lebensgemeinschaften gestört und Korallenriffe zusätzlich geschwächt werden. Zudem ist die Herkunft vieler Fische schwer nachzuvollziehen, da es kaum Transparenz in den Lieferketten gibt.

Die Autoren fordern daher ein stärkeres Engagement für nachhaltige Alternativen, insbesondere den Ausbau der Aquakultur, die Einführung klarer Zertifizierungsstandards und strengere Kontrollen des Handels. Auch Verbraucherinnen und Verbraucher sollen bewusster einkaufen und auf Herkunft und Fangmethoden achten. Insgesamt verdeutlicht die Studie, dass eine nachhaltige Wasser- und Artenbewirtschaftung dringend notwendig ist, um die langfristige Stabilität mariner Ökosysteme und die Vielfalt der Korallenriffe zu sichern.

Mehr Informationen: Bing Lin et al, Extent of threats to marine fish from the online aquarium trade in the United States, Conservation Biology (2025). DOI: 10.1111/cobi.70155

 

Neue Beobachtungen fluoreszierender Organismen in der Bandasee und im Roten Meer

Neue Beobachtungen fluoreszierender Organismen in der Bandasee und im Roten Meer.

Ein Team aus Zoologen und Meeresbiologen verschiedener indonesischer Institutionen hat gemeinsam mit einem Kollegen aus Deutschland bei 27 Meeresbewohnern bislang unbekannte Fluoreszenzerscheinungen entdeckt. In ihrem im Journal PLOS ONE veröffentlichten Artikel beschreibt die Gruppe ihre dreijährige Suche nach Fluoreszenz bei Meereslebewesen im Roten Meer und in der Bandasee.
Zu den neu entdeckten Fluoreszenzarten gehörten Boxerkrabben, Schlangennadeln und mehrere Arten von Steinkorallen. Das Team stellte außerdem fest, dass einige davon wirklich einzigartig waren, wie etwa der Scharlachrote Anglerfisch, der am ganzen Körper grün fluoreszierte, aber auch vereinzelte orangefarbene Flecken aufwies.

WARUM MEERWASSER SCHÄUMT UND SÜSSWASSER NICHT

Auf die Frage, warum Meerwasser schäumt und Süßwasser nicht, gab es bis dato noch keine exakte Antwort. Jahrzehntelang wunderten sich Fachleute, warum Luftbläschen im Meerwasser so stabil sind. Durch experimentelle Beobachtungen konnten Physiker dieses Rätsel nun lösen. Beobachtungen der Verschmelzung von Luftblasen in Wasser erklären, warum gelöstes Salz diesen Prozess verlangsamt und zu Schaum führt.

In der am 8. September 2023 veröffentlichen Arbeit bei „Physical Review Letters“ wird beschrieben, wie die Kräfte zwischen den im Salzwasser befindlichen Ionen dazu führen, dass das Wasser zwischen den Luftbläschen nur langsam abfließen kann. Das verhindert, dass die dünne Schicht einfach wegströmt. Die Ionen verzögern sozusagen den Zusammenprall der Bläschen erheblich, indem sie die Lebensdauer des dünnen Flüssigkeitsfilms zwischen den Bläschen verlängern.

Nanoscale Transport during Liquid Film Thinning Inhibits Bubble Coalescing Behavior in Electrolyte Solutions

Luftblasen, die in reinem Wasser aufgewirbelt werden, können leicht zusammenfließen. In Meerwasser oder anderen Flüssigkeiten, die gelöste Verunreinigungen enthalten, verschmelzen die Blasen jedoch viel langsamer, weshalb solche Flüssigkeiten oft einen dauerhaften Schaum bilden. Jetzt glaubt ein Team von Ingenieuren, die grundlegende Ursache für diesen Unterschied gefunden zu haben: subtile Kräfte, die durch Elektrolyte entstehen, d. h. mobile Ionen, die entstehen, wenn sich Stoffe in Flüssigkeiten auflösen. Bei einer Kollision zwischen zwei Blasen verringern diese Kräfte die Geschwindigkeit, mit der die Flüssigkeit, die die Blasen trennt, abfließen kann, erheblich. Dieses Verständnis, so die Forscher, erklärt, warum Schäume in salzigem Meerwasser so leicht entstehen.

In reinem Wasser verhielten sich die Blasen wie starre Kugeln, die sich ohne Formveränderung näherten und dann bei Kontakt miteinander verschmolzen. Bei Blasen in verschiedenen Elektrolytlösungen vollzog sich der Verschmelzungsprozess jedoch auffallend anders und in zwei Phasen. Zunächst wuchsen die Blasenoberflächen näher zusammen, wie in reinem Wasser. Sobald sich der Abstand jedoch auf etwa 40 Nanometer (nm) verringerte, flachten sich die „Vorderkanten“ der sich nähernden Oberflächen ab, als ob eine abstoßende Kraft vorhanden wäre. Diese Abflachung verzögerte die Blasenverschmelzung um 2 bis 14 Millisekunden, wie Experimente mit einer Auswahl von Elektrolyten und Blasen unterschiedlicher Größe ergaben. Die Forscher fanden heraus, dass bei einer Schichtdicke von 30-50 nm ein Unterschied in der Elektrolytkonzentration zwischen der Schicht und dem Rest der Flüssigkeit besteht. Dieser Unterschied erzeugt ein kleines Oberflächenspannungsgefälle und eine damit verbundene Kraft, die den Ausfluss der Flüssigkeit aus dem Film verlangsamt.

 

Stammbaum Korallen

„Stammbaum“ von in Aquarien gezüchteten Korallen.

Der Stammbaum gibt Aufschluss über die Maximierung der genetischen Vielfalt und Anpassungsfähigkeit von Korallen, die zur Erhaltung gezüchtet werden
In einer Studie hat ein Team von Biologen den ersten Stammbaum für in Aquarien gezüchtete Korallen erstellt und eine Liste der besten Praktiken zur Erhaltung der genetischen Vielfalt bei in Aquarien gezüchteten Korallen vorgelegt.
Für die Studie führten die Forscher genetische Analysen an den Eltern und Nachkommen von zwei Generationen von Acropora hyacinthus-Korallen durch, die 2019 und 2020 im Coral Spawning Lab gelaicht hatten. Anhand der Ähnlichkeiten zwischen der DNA der Korallen konnten die Forscher die Beziehungen zwischen den Individuen bestimmen, etwa die Elternschaft oder die Geschwisterschaft. Insbesondere fanden die Forscher 887 Punkte in dem 450 Millionen Buchstaben langen Code, die bei in Aquarien gezüchteten Korallen anders zu sein scheinen als bei den in der freien Natur geborenen.

Zwei neue Lippfische aus Mikronesien.

Pseudojuloides pluto und proserpina sind zwei neue Lippfische aus Mikronesien und den Marquesas-Inseln.

Es wurden morphologische und molekulare Untersuchungen an den verschiedenen Populationen von P. atavai durchgeführt. Die beiden neuen Arten sind das Ergebnis dieser Untersuchungen.
Die Männchen sind am Rücken olivgrün und am Bauch weißlich-grün gefärbt, obwohl dies bei den Männchen im Endstadium normalerweise durch Schwarz verdeckt wird.

Optimale Temperaturen für SPS

Studie untersucht optimale Temperaturen für schnellwüchsige SPS

Das Wachstum von vier Korallenarten eines Riffs am zentralen Great Barrier Reef wurde einen Monat lang bei 10 verschiedenen Temperaturen zwischen 19°C und 31°C im National Sea Simulator von AIMS verfolgt. Die für die Studie untersuchten Korallen Acropora hyacinthus, Acropora tenuis, Pocillopora verrucosa und Stylophora pistillata sind schnell wachsende Korallenarten, die im Great Barrier Reef weit verbreitet sind. Die Studie zeigt, dass Korallen dieser Art wahrscheinlich einen doppelten Schaden erleiden werden: eine hohe Sterblichkeitsrate während akuter Hitzestressereignisse und erhebliche Wachstumseinbußen aufgrund der zunehmenden Erwärmung des Ozeans.
Von besonderem Interesse für uns Aquarianer ist, dass in der Studie auch die optimalen Wachstumstemperaturen für die einzelnen Arten angegeben sind. Acropora hyacinthus wuchs am schnellsten bei 27,4 °C, während der Wert für Acropora tenuis 28,2, Pocillopora verrucosa 29,5 und Stylophora pistillata 28,5 betrug. Der Bericht geht auch auf wichtige Aspekte wie Beleuchtung, Strömung und Fütterung ein.